Research Monographs:

  1. R. Eftimie, D. Trucu (Editors), 2024. Modelling and computational approaches for multi-scale phenomena in cancer research. From cancer evolution to cancer treatment. World Scientific 312 pages) https://www.worldscientific.com/worldscibooks/10.1142/q0424#t=aboutBook
  2. R. Eftimie, 2018. “Hyperbolic and kinetic models for self-organised biological aggregations and movement. A modelling & pattern formation approach”, Springer. (280 pages) (DOI 10.1007/978-3-030-02586-1); https://www.springer.com/us/book/9783030025854

Journal articles & Book chapters

(#denotes papers with students/postdocs)

  1. Nirapada Santra, Guruprasad Samanta, R. Eftimie & Yasuhiro Takeuchi (2025). A sex-structured mathematical model of HPV transmission dynamics with direct and indirect pathways: stability, bifurcation, treatment strategies and time delay. The European Physical Journal Plus, Vol. 140, article nbr. 967 (10.1140/epjp/s13360-025-06865-1)
  2. # J. Marguet, R. Eftimie , A. Lozinski (2025). Numerical Approaches for Transport-Dominated PDE Models with Applications to Biology.  Computational and Applied Mathematics (DOI: 10.1007/s40314-025-03146-6)
  3. #O.E. Adebayo, B. Chatelain, D. Trucu, R. Eftimie (2025). Deep Learning Approaches for the Classification of Keloid Images in the Context of Malignant and Benign Skin Disorders. Diagnostics, 15(6): 710 (https://doi.org/10.3390/diagnostics15060710).
  4. R. Eftimie (2025). Multi-scale phenomena behind the transmission of infectious disease. Comment on “Data-driven mathematical modelling approaches for COVID-19: A survey” by J. Demongeot & P. Magal. Physics of Life Reviews, 52:53-54. (DOI: 10.1016/j.plrev.2024.12.001 ; https://pubmed.ncbi.nlm.nih.gov/39644611/)
  5. # O.E Adebayo, D. Trucu, R. Eftimie (2025). Analytical investigation of a non-local mathematical model for normal and abnormal wound healing: stability and existence of solutions.  Discrete and Continuous Dynamical Systems B, 30(7):2401-2428 (https://www.aimsciences.org/article/doi/10.3934/dcdsb.2024171)
  6. # M. Massard, B. Saussereau, C. Chirouze, Q. Lepiller, R. Eftimie, A. Perasso (2025). Modelling and investigating memory immune responses in acute infectious diseases. Application to Influeza A Virus and SARS-CoV-2 reinfections. Infectious Disease Modelling. 10(1), 163-188 (https://doi.org/10.1016/j.idm.2024.09.009)
  7. # T.T. Le, R. Eftimie  (2024). Transitions between different localized solutions with different symmetries in non-local hyperbolic models for biological aggregations. Symmetry. 16(10), 1257; (https://doi.org/10.3390/sym16101257 )
  8. #T.T. Le, R. Eftimie (2024). Numerical challenges for the understanding of localized solutions with different symmetries in non-local hyperbolic systems. Computers & Mathematics with Applications, 169:112—131. (https://www.sciencedirect.com/science/article/abs/pii/S089812212400275X)
  9. Y. Souleiman, L.I. Abdilahi, R. Eftimie (2024). Modelling and investigating malaria P. Falciparum and P. Vivax infections: application to Djibouti data. Infectious Disease Modelling, 9(4):1095-1116 (https://doi.org/10.1016/j.idm.2024.06.003)
  10. N. Bellomo, R. Eftimie, G. Forni (2024). What is the in-host dynamics of SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 19(2): 655-681 ( doi: 10.3934/nhm.2024029)
  11. G. Bertaglia, A. Bondesan, D. Burini, R. Eftimie, L. Pareschi, G. Toscani, (2024). New trends on the systems approach to modeling SARS-COV-2 pandemics in a globally connected planet. Mathematical Models and Methods in Applied Sciences, 34(11), 1995-2054 (https://doi.org/10.1142/S0218202524500301)
  12. L. Finlayson, L. McMillan, S. Suveges, D. Steele, R. Eftimie, D. Trucu, CTA Brown, E. Eadie, K. Hossain-Ibrahim, K. Wood (2024).Simulation of Intraoperative PDT for Glioblastoma using Monte Carlo Radiative Transport , Photodiagnosis and Photodynamic Therapy, 46:104118 (https://doi.org/10.1016/j.pdpdt.2024.104118)
  13. L. Finlayson, L. McMillan, S. Suveges, D. Steele, R. Eftimie, D. Trucu, C.T.A. Brown, E. Eadie, K. Hossain-Ibrahim, K. Wood, (2024), Simulating photodynamic therapy for the treatment of glioblastoma using Monte Carlo radiative transport, J. Biomed. Opt. 29(2), 025001(doi: 10.1117/1.JBO.29.2.025001)
  14. I. Pajic-Lijakovic, R. Eftimie, M Milivojevic, S.P.A. Bordas (2024). Segregation of co-cultured multicellular systems: review and some modeling consideration. Quarterly Reviews of Biophysics, 1-43.
  15. # T. Faniran, M.Adewole, C. Chirouze, A. Perasso, R. Eftimie (2023). Multiscale Model of Within-Host and Between-Host COVID-19 Transmission: The Roles of IgG and IgM on Viral Transmission, Mathematics in Applied Sciences and Engineering (MASE), Vol 4(4), pp. 249-350 (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4620488 ; https://ojs.lib.uwo.ca/index.php/mase/article/view/16685)
  16. R. Eftimie (2023). Multiscale data for parametrising multiscale models : Comment on “What is life? Active particles tools towards behavioral dynamics in social-biology and economics” by N. Bellomo, M. Esfahanian, V. Secchini, and P. Terna, Physics of Life Reviews , 47:124-125 (https://doi.org/10.1016/j.plrev.2023.10.002).
  17. R. Eftimie, G. Rollin, O. Adebayo, S. Urcun, SP.A. Bordas (2023). Modelling keloids dynamics: a brief review and new mathematical perspectives. Bulletin of Mathematical Biology, 85(12), 117. (https://link.springer.com/article/10.1007/s11538-023-01222-8)
  18. O.E. Adebayo, S. Urcun, G. Rolin, S.P.A. Bordas, D. Trucu, R. Eftimie (2023). Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models. Mathematical Biosciences and Engineering, 20(9), 17446–17498 (https://doi.org/10.3934/mbe.2023776)
  19. I. Pajic-Lijakovic, R. Eftimie, M Milivojevic, S.P.A. Bordas (2023). Multi-scale nature of the tissue surface tension: theoretical consideration on tissue model systems. Advances in Colloid and Interface Science. 315, 102902 (https://doi.org/10.1016/j.cis.2023.102902)
  20. I. Pajic-Lijakovic, R. Eftimie, M Milivojevic, S.P.A. Bordas (2023). The dynamics along the biointerface between the epithelial and cancer mesenchymal cells: modeling consideration  Seminars in Cell and Development Biology, 147, 47–57. (https://doi.org/10.1016/j.semcdb.2022.12.010)
  21. I. Pajic-Lijakovic, R. Eftimie, M Milivojevic, S.P.A. Bordas (2022). The rearrangement of co-cultured cellular model systems via collective cell migration.  Seminars in Cell and Development Biology, 147, 34–46. (https://doi.org/10.1016/j.semcdb.2022.10.002 )
  22. R. Eftimie, (2022). Grand challenges in mathematical biology.  Frontiers in Applied Mathematics and Statistics. ( https://doi.org/10.3389/fams.2022.1010622 )
  23. R. Eftimie, A. Mavrodin, S.P.A. Bordas, (2022). From digital control to digital twins: a brief review and future perspectives. AMECH: Advances in Applied Mechanics Volume 56, pp 1-49. (https://doi.org/10.1016/bs.aams.2022.09.001) 
  24. # L. Bartha, R. Eftimie (2022). Mathematical investigation into the role of macrophage heterogeneity on the temporal and spatio-temporal dynamics of non-small cell lung cancers. Journal of Theoretical Biology, 549:111207 (  https://doi.org/10.1016/j.jtbi.2022.111207 ).
  25. N. Abaid, R. Eftimie, A. Hutt, L. Van Veen, 2022. Editorial: Modelling collective motion across scales, Frontiers in Applied Mathematics and Statistics.https://www.frontiersin.org/articles/10.3389/fams.2022.932364/full )
  26. F.R. Macfarlane, M.A.J. Chaplain, R. Eftimie, 2022. Modelling rheumatoid arthritis: A hybrid model of pannus formation in a small joint.  Immunoinformatics, 6, 100014 (https://doi.org/10.1016/j.immuno.2022.100014 )
  27. D.M. Martos, S. Folley, B. Parcell, D. Trucu, R. Eftimie, 2022. Modelling COVID-19 transmission across hospital wards: the costs of patient care. Mathematical Biosciences and Engineering, 19(7), 6504-6522.Doi 10.3934/mbe.2022306(http://www.aimspress.com/article/doi/10.3934/mbe.2022306 )
  28. # A. Alsisi, R. Eftimie, D. Trucu, 2022. Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. Mathematical Biosciences and Engineering,, 2022, Volume 19Issue 6: 6157-6185. doi: 10.3934/mbe.2022288
  29. # M. Massard, R. Eftimie, A. Perasso, B. Saussereau, 2022. A multi-strain epidemic model for COVID-19 with infected and asymptomatic cases: application to French data. Journal of Theoretical Biology, 545:111117 (doi: 10.1016/j.jtbi.2022.111117 )
  30. G. Eftimie, R. Eftimie, 2022Quantitative predictive approaches for Dupuytren’s disease: a brief review and future perspectives. Mathematical Biosciences and Engineering, 19(3): 2876-2895.( https://www.aimspress.com/article/id/61e53cc1ba35de26abf88b78 )
  31. # S. Süveges, S., R. Eftimie, D. Trucu, 2022. Repolarisation of macrophages within collective tumour cell migration: a multiscale moving boundary approach. Frontiers in Applied Mathematics and Statistics, 7, 799650.(https://doi.org/10.3389/fams.2021.799650 )
  32. # M. Alwuthaynani, R. Eftimie, D. Trucu, 2021. Reconstruction of mutation laws in heterogeneous tumours with local and non-local dynamics. Mathematical Biosciences and Engineering, 19(4): 3720-3747 (doi: 10.3934/mbe.2022171).
  33. # S. Suveges, K. Hossain-Ibrahim, J. Douglas Steele, R. Eftimie, D. Trucu, 2021. Mathematical modelling of glioblastomas within the brain: a 3D multi-scale moving-boundary approach. Mathematics MDPI, 9(18), 2214 ( https://doi.org/10.3390/math9182214 ) https://www.mdpi.com/2227-7390/9/18/2214
  34. # A. Alsisi, R. Eftimie, D. Trucu, 2021. Non-local multiscale approaches for the impact of go or grow hypothesis on tumour-virus interactions. Mathematical Biosciences and Engineering, 18(5), 5252-5284 (doi: 10.3934/mbe.2021267 ).
  35. S. Süveges, I. Chamseddine, K.A. Rejniak, R. Eftimie, D. Trucu, 2021. Collective cell migration in a fibrous environment: a hybrid multi-scale modelling approach. Front. Apl. Math. Stat. (doi: 10.3389/fams.2021.680029 ).
  36. # C. Barelle, R. Eftimie, 2021. Mathematical investigation of innate immune responses to lung cancer: the role of macrophages with mixed phenotypes. Journal of Theoretical Biology, 524: 110739 (https://doi.org/10.1016/j.jtbi.2021.110739).
  37. S. Bernardi, R. Eftimie, K.J. Painter, 2021. Leadership through influence: what mechanisms allow leaders to steer a swarm?Bulletin of Mathematical Biology, 83:69. (https://link.springer.com/article/10.1007/s11538-021-00901-8 ).
  38. # N. Almuallem, D. Trucu, R. Eftimie. 2021. Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: a mathematical approach. Mathematical Biosciences and Engineering, 18(1): 764-799.(doi: 10.3934/mbe.2021041 )
  39. # D.M. Martos, B. Parcell, R. Eftimie, 2020. Modelling the transmission of infectious diseases across hospital bays: Covid-19 as an example. Mathematical Biosciences and Engineering, 17(6): 8084-8104 (doi: 10.3934/mbe.2020410 ).
  40. # S. Süveges, R. Eftimie, D. Trucu2020. Directionality of Macrophages Movement in Tumour Invasion: A Multiscale Moving-Boundary Approach. Bull. Math. Biol. 82(12): 148
  41. # A. Alsisi, R. Eftimie, D. Trucu, 2020. Non-local multiscale modelling approaches for tumour-oncolytic virus interactions. Mathematics in Applied Sciences and Engineering, 1(3), 207-273. (https://doi.org/10.5206/mase/10773)
  42. M.J. Pitcher, R. Bowness, S. Dobson, R. Eftimie, S. Gillespie. 2020. Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle. Journal of Theoretical Biology, 506, 110381. 
  43. # N. Almuallem, R. Eftimie, 2020. A mathematical model for the role of macrophages in the persistence and elimination of oncolytic viruses. Mathematics in Applied Sciences and Engineering, 1(2): 126-149  (https://ojs.lib.uwo.ca/index.php/mase/article/view/8543 )
  44. R. Eftimie, 2020. The evolution of communication mechanisms in self-organised ecological aggregations: impact on pattern formation. Mathematical Models and Methods in Applied Sciences Vol. 30, No 10, pp 1917-1934. (https://www.worldscientific.com/doi/10.1142/S0218202520400138 )
  45. R. Eftimie, 2020. Investigation into the role of macrophages heterogeneity on solid tumour aggregations. Mathematical Biosciences, vol 322, 108325 (https://doi.org/10.1016/j.mbs.2020.108325 )
  46. F. Macfarlane, M.A.J. Chaplain, R. Eftimie, 2020. Quantitative predictive modelling approaches to understand rheumatoid arthritis: A brief review. Cells, 9:74 (https://doi.org/10.3390/cells9010074)
  47. T. Alzahrani, R. Eftimie, D. Trucu2020Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics. Mathematical Biosciences, 232: 108296 (https://doi.org/10.1016/j.mbs.2019.108296)
  48. R. Eftimie, L. Gibelli, 2020. A kinetic theory approach for modeling of macrophages heterogeneity and plasticity during cancer progression. Mathematical Models and Methods in Applied Sciences (M3AS), 30(4), 659-683 (https://doi.org/10.1142/S0218202520400011)
  49. R. Eftimie, G. Eftimie, 2019. Investigating macrophages plasticity following tumour-immune interactions during oncolytic therapies. Acta Biotheoretica. 67 (4), 321-359 (https://doi.org/10.1007/s10441-019-09357-9 )
  50. # S.H. Ho, D. He, R. Eftimie, 2019. Mathematical models of transmission dynamics and vaccine strategy of influenza season in Hong Kong 2017-2018 winter. Journal of Theoretical Biology, 476, 74-94. (https://www.ncbi.nlm.nih.gov/pubmed/31128142 )
  51. T. Alzahrani, R. Eftimie, D. Trucu, 2019. Multi-scale modelling of cancer response to oncolytic viral therapy. Mathematical Biosciences, 310, 76-95 (https://doi.org/10.1016/j.mbs.2018.12.018 )
  52. P.-L. Buono, R. Eftimie, M. Kovacic, L. van Veen, 2019. Kinetic models for pattern formation in animal aggregations: a symmetry and bifurcation approach. Chapter in “Active Particles, Volume 2”(Edited by N. Bellomo, P. Degond and E. Tadmor), Birkhauser, Pp. 39-64. (https://link.springer.com/chapter/10.1007/978-3-030-20297-2_2 )
  53. R. Eftimie, 2018. The impact of environmental noise on animal communication: pattern formation in a class of hyperbolic models for self-organised animal aggregations. BIOMATH 7, 1807217 (http://dx.doi.org/10.11145/j.biomath.2018.07.217 ).
  54. # V. Bitsouni, R. Eftimie, 2018. Non-local parabolic and hyperbolic models for cell polarisation in heterogeneous cancer cell populations. Bulletin of Mathematical Biology, 80(10), 2600-2632. (https://www.ncbi.nlm.nih.gov/pubmed/30136211 )
  55. # R. Eftimie, E. Hassanein, 2018. Improving cancer detection through combinations of cancer and immune biomarkers.Journal of Translational Medicine, 16:73 (https://doi.org/10.1186/s12967-018-1432-8 ) 
  56. R. Eftimie, G. Eftimie, 2018. Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics. Letters in Biomathematics, 5(1), 70-99. (https://www.tandfonline.com/doi/abs/10.1080/23737867.2018.1430518 )
  57. H.B. Mistry, D. Orrell, R. Eftimie, 2018. Heterogeneity in the tumour size dynamics differentiates Vemurafenib, Dabrafenib and Trametinib in metastatic melanoma. Cancer Chemotherapy and Pharmacology. 81(2); 325-332. (https://doi.org/10.1007/s00280-017-3486-3 )
  58. # V. Bitsouni, D. Trucu, M.A.J. Chaplain, R. Eftimie, 2017. Aggregation and travelling wave dynamics in a two-population model of cancer cells. Mathematical Modelling and Medicine. 35(4), 541-577. (https://www.ncbi.nlm.nih.gov/pubmed/29346560 )
  59. # M. Pineda, R. Eftimie, 2017. Modelling the collective response of heterogeneous cell populations to stationary linear gradients and chemical signal relay. Physical Biology. 14(6): 066003 (https://doi.org/10.1088/1478-3975/aa89b4 ) 
  60. # R. Eftimie, M. Perez, P.-L. Buono, 2017. Pattern formation in a nonlocal mathematical model for the multiple roles of the TGF-b pathway in tumour dynamics. Mathematical Biosciences, 289, 96-115(https://www.sciencedirect.com/science/article/abs/pii/S0025556416302887 )
  61. V. Bitsouni, M.A.J. Chaplain, R. Eftimie, 2017. Mathematical modeling of cancer invasion: the multiple roles of TGF-b pathway on tumour proliferation and cell adhesion. Mathematical Models and Methods in Applied Sciences (M3AS), 27(3), 1929-1962. (https://www.worldscientific.com/doi/10.1142/S021820251750035X )
  62. # R. Eftimie, H. Hamam, 2017. Modelling and investigation of the CD4+ T cells – macrophages paradox in melanoma immunotherapies. Journal of Theoretical Biology. 420: 82-104 (https://www.ncbi.nlm.nih.gov/pubmed/28219660 )
  63. # R. Eftimie, C.K. Macnamara, J. Dushoff, J.L. Bramson, D.J.D. Earn, 2016. Bifurcations and chaotic dynamics in a tumour-immune-virus system. Mathematical Modelling of Natural Phenomena. 11(5), 65-85( https://www.mmnp-journal.org/articles/mmnp/abs/2016/05/mmnp2016115p65/mmnp2016115p65.html )
  64. R. Eftimie, J.J. Gillard, D.A. Cantrell, 2016. Mathematical models for immunology: current state of the art and future research directions. Bulletin of Mathematical Biology 78(10), 2091-2134(https://www.ncbi.nlm.nih.gov/pubmed/27714570 )
  65. R. Eftimie, 2016. Validation of multi-scale models for fibrosis. Comment on “Towards a unified approach in the modelling of fibrosis: A review with research perspectives” by M. Ben Amar and C. Bianca. Physics of Life Reviews. 17, 90-91. (https://www.ncbi.nlm.nih.gov/pubmed/27161945 )
  66. N. den Breems, R. Eftimie, 2016. The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes. Journal of Theoretical Biology, 390, 23-39. ( https://www.ncbi.nlm.nih.gov/pubmed/26551154  )
  67. P-L. Buono, R. Eftimie, 2016. Lyapunov-Schmidt and Centre Manifold Reduction Methods for Nonlocal PDEs Modelling Animal Aggregations. Chapter In “Mathematical Sciences with Multidisciplinary Applications”, Vol 157, pp 29-59 (Eds. B. Toni. STEAM-H, Springer). ( https://link.springer.com/chapter/10.1007/978-3-319-31323-8_3 )
  68. # C.K Macnamara, R. Eftimie, 2015. Memory versus effector immune responses in oncolytic virotherapies. Journal of Theoretical Biology, 377, 1-9.  (https://www.ncbi.nlm.nih.gov/pubmed/25882747 )
  69. J.A. Carrillo, R. Eftimie, F.K.O. Hoffmann, 2015, Non-local kinetic and macroscopic models for self-organised animal aggregations. Kinetic and Related Models (KRM), 8(3), 413-441.
  70. # M. Pineda, C.J. Weijer, R. Eftimie, 2015. Modelling cell movement, cell differentiation, cell sorting and proportion regulation in Dictyostelium discoideum aggregations. Journal of Theoretical Biology, 370, 135-150. (https://www.sciencedirect.com/science/article/pii/S0022519315000594 )
  71. R. Eftimie, 2015. The quest for a new modelling framework in mathematical biology. Comment on “On the interplay between mathematics and biology: hallmarks towards a new systems biology” by N. Bellomo et al. Physics of Life Reviews, 12, 72-73. (https://www.ncbi.nlm.nih.gov/pubmed/25633592 )
  72. R. Eftimie, 2015. Modelling communication and movement: from cells to animals and humans. Snapshots of modern mathematics from Oberwolfach. No. 21 (2 pages)
  73. # R. Eftimie, A. Coulier, 2015. The role of avoidance and learning behaviours on the formation and movement of biological aggregations. Mathematical Modelling of Natural Phenomena, 10(2), 27-44. (https://www.mmnp-journal.org/articles/mmnp/abs/2015/02/mmnp201510p27/mmnp201510p27.html )
  74. P.-L. Buono, R. Eftimie, 2015, Symmetries and pattern formation in hyperbolic versus parabolic models of aggregation. Journal of Mathematical Biology, 71(4), 847-881. (https://link.springer.com/article/10.1007/s00285-014-0842-3 )
  75. P.-L. Buono, R. Eftimie, 2014, Codimension-2 bifurcations in animal aggregation models with symmetry. SIAM Journal on Applied Dynamical Systems. 13(4), 1542-1582 (https://epubs.siam.org/doi/abs/10.1137/130932272 )
  76. P.-L. Buono, R. Eftimie, 2014. Analysis of Hopf/Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations. Mathematical Models and Methods in Applied Sciences. 24(2), 327-357 (https://www.worldscientific.com/doi/abs/10.1142/S0218202513400101 )
  77. D. He, J. Dushoff, R. Eftimie, D.J.D. Earn, 2013. Patterns of spread of Influenza A across Canada. Proceedings of the Royal Society B: Biological Sciences. 280(1770), 20131174. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779324/ )
  78. R. Eftimie, 2013. The effect of different communication mechanisms on the movement and structure of self-organized aggregations. Mathematical Modelling of Natural Phenomena, 7(2), 32-51
  79. R. Eftimie, 2013. Simultaneous use of different communication mechanisms leads to spatial sorting and unexpected collective behaviours in animal groups. Journal of Theoretical Biology. 337(21), 42-53. (https://www.ncbi.nlm.nih.gov/pubmed/23938233 )
  80. R. Eftimie, 2012. Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol. 65(1), 35-75. (https://link.springer.com/article/10.1007/s00285-011-0452-2 )
  81. R. Eftimie, J. Dushoff, B.W. Bridle, J.L. Bramson, D.J.D. Earn, 2011, Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions, Bull. Math. Biol., 73(12), 2932-2961. (https://www.ncbi.nlm.nih.gov/pubmed/21476110 )
  82. R. Eftimie, J.L. Bramson, D.J.D. Earn, 2010. Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma, J. Theor. Biol. 265 (3), 467-480. (https://www.ncbi.nlm.nih.gov/pubmed/20450922 )
  83. R. Eftimie, J.L. Bramson, D.J.D. Earn, 2011. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models, Bull. Math. Biol., 73(1), 2-32.  (https://www.ncbi.nlm.nih.gov/pubmed/20225137 )
    • selected by Thomson Reuters Essential Science Indicators as one of the most cited paper in its research area. 
  84. R. Fetecau, R. Eftimie, 2010. An investigation of a nonlocal hyperbolic model for self-organization of biological groups, J. Math. Biol. 61(4), 545- 579. (https://link.springer.com/article/10.1007/s00285-009-0311-6 )
  85. C.O. Stan, E. Panaitescu, R. Eftimie, 2009. Hydrogeochemical aspects linked to the shallow groundwater quality at Cristesti (Iasi county), Scientific Annals of University “Al. I. Cuza”, Iasi, Geology, LV, no. 1, 113-126. 
  86. R. Eftimie, G. de Vries, M.A. Lewis, 2009. Weakly nonlinear analysis of a hyperbolic model for animal group formation, J. Math. Biol., 59, 36 -74. (https://link.springer.com/article/10.1007/s00285-008-0209-8 )
  87. R. Eftimie, G. de Vries, M.A. Lewis, 2007. Complex spatial group patterns result from different animal communication mechanisms, Proc. Natl. Acad. Sci., 104 (17), 6974 – 6979(https://www.pnas.org/content/104/17/6974 )
  88. R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, 2007. Modeling group formation and activity patterns in self-organizing populations, Bull. Math. Biol., 69(5), 1537 – 1566. (https://link.springer.com/article/10.1007/s11538-006-9175-8 )
  89. Eftimie, Gh, Eftimie, R., Mathematics, Chapter in: Examene 2001. Teste pentru capacitate.  Limba si literatura romana. Istorie. Matematica. Geografie (in Romanian) (Ed. D. Fiscutean), Polirom, Iasi 2001, pp 173-261, (2nd Edition) (ISBN: 973-683-595-2) (In Romanian)
    • The chapter has mathematics exercises for primary school students in Romania, to prepare them for the national entrance exam to the highschool level. First edition of this book was published in 2000 (ISBN: 973-683-379-8).  

Chapters in science books for the general public

  1. 30-Second Numbers. The 50 key topics for understanding numbers and how we use them, 2020. (Editors: Niamh Nic Daeid, Christian Cole;  Ivy Press, The Quarto Group, 160 pages) 
  • Contributors: Christian Cole, Niamh Nic Daeid, Raluca Eftimie, Harry Gray, Joyce Kafui Klu, John McDermott, David Pontin

PhD Thesis:

R. Eftimie, 2008. Modeling group formation and activity patterns in self-organising communities of organisms. University of Alberta (Canada). PhD Thesis (ISBN 0494463120, 9780494463123)